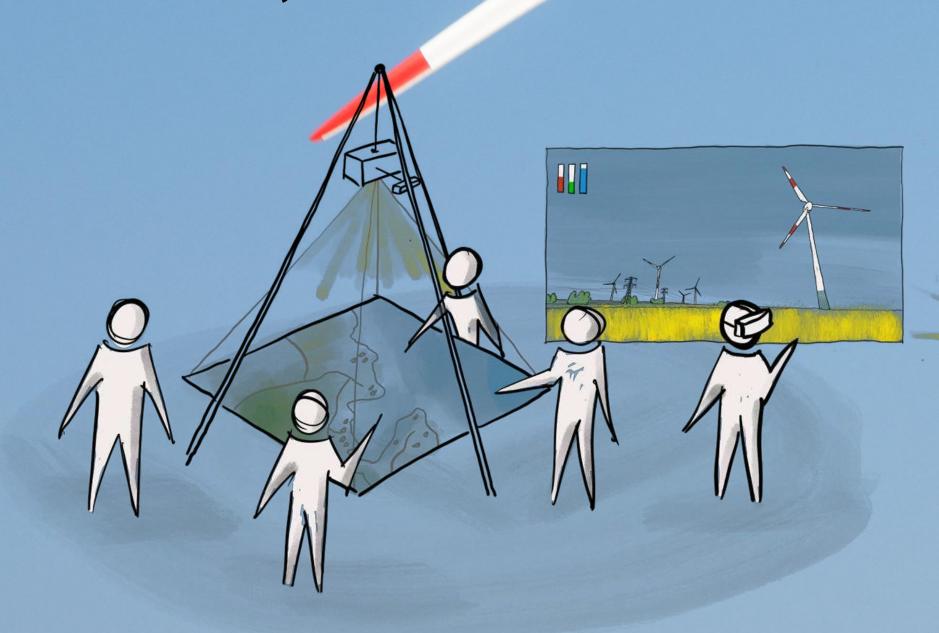
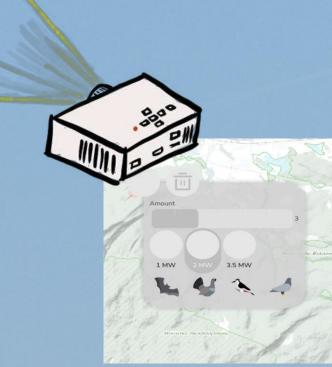


Windenergie im Spannungsfeld: Gesellschaftliche Akzeptanz, ökologische Herausforderungen und innovative Lösungen

Schöll, E.M.¹, Mikovits, C.², Bittner, K.³, Baumgartinger-Seiringer, M.³, Diengdoh, V.L.¹, Kunz, F.¹, Nopp-Mayr, U.¹ & Schauppenlehner, T.³

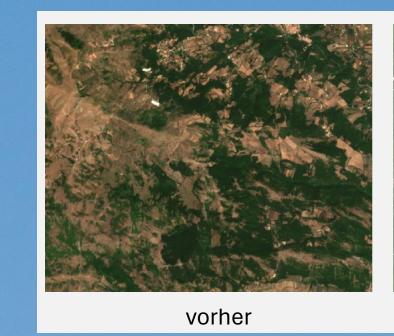

- ¹ BOKU University, Institut für Wildbiologie und Jagdwirtschaft, Wien, Österreich, Email: eva.schoell@boku.ac.at
- ² BOKU University, Institut für Nachhaltige Wirtschaftsentwicklung, Wien, Österreich
- ³ BOKU University, Institut für Landschaftsentwicklung, Erholungs- und Naturschutzplanung, Wien, Österreich

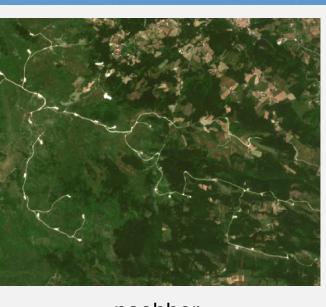

Hintergrund

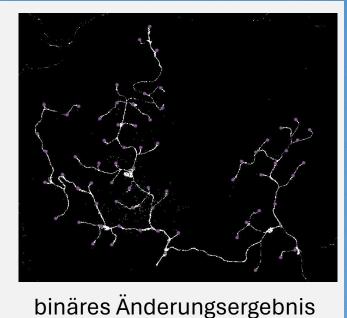
Obwohl ein rascher und umfassender Ausbau erneuerbaren Energie notwendig ist, um die Klimaziele zu erreichen, steht unter anderem auch der Windenergie-Sektor vor großen Herausforderungen. Die Akzeptanz unter den gesellschaftlichen Akteuren ist häufig gering und die Bedenken hinsichtlich der Auswirkungen auf das eigene Lebensumfeld sind vielfältig. Im Rahmen des Projektes WIMBY - "Wind in my backyard" wurden neben dem Flächenverbrauch (Landnutzungsänderungen) und den potenziellen Auswirkungen auf Wildtiere auch visuelle Auswirkungen von Windturbinen auf die Landschaft und das Landschaftsbild visualisiert.

Planspiel Workshops

 Kollaborative Planspiel mit einer interaktiven Karte als Spielbrett: visuelles und physisches Human Machine Interface, soziales Lernen

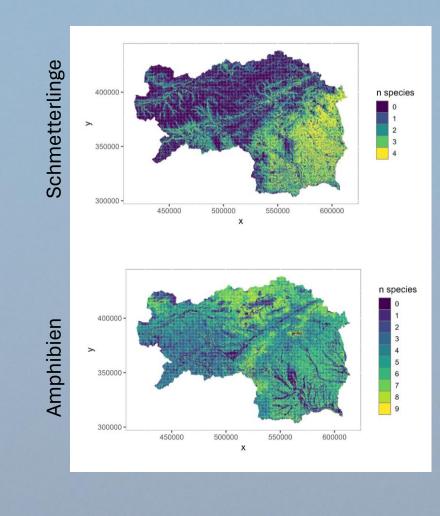

- Spielziele und –phasen: Ausschluss und Eignungsflächen, Windparkplanung unter Einbezug von Energieproduktion und Umweltparametern
- Immersive **3D-Visualisierung:** Interaktiv, realitätsnah, animiert

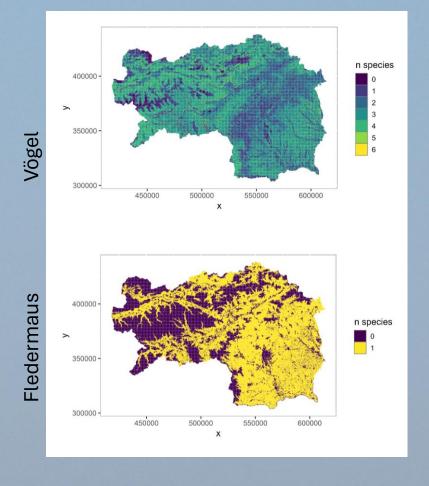



Landnutzungsänderungen

 Analyse von Sentinel-2 Satellitenbildern der Umgebung von mehr als 13.000 Windturbinen

"nachher"-Bildern





- Entwicklung eines **Algorithmus** zur Erkennung von Unterschieden durch den Vergleich von "vorher" und
- Statistische Analyse der Veränderungen durch Pufferpolygone, konkave und konvexe Umhüllende rund um Windparks

Potenzielle Auswirkungen auf ausgewählte Tierarten

- 23 Tierarten: 10 Amphibien, 1 Fledermaus, 4 Schmetterlinge, 8 Vögel
- Modellierung des Habitatpotentials: 6 verschiedene Modellierungsansätze (Ensamble)
- Konnektivitätsanalysen: Landschaft als Netzwerk von Stromquellen, Erdungen und Widerständen abstrahiert
- Ergebnisse vereinfacht dargestellt, um potenzielle Auswirkungen von Windturbinen auf Wildtiere visualisieren zu können

Fazit

- Flächenverbrauch ist auf landwirtschaftlich genutzten Flächen deutlich niedriger als in naturnahen Umgebungen
- Lebensraumverlust und –fragmentierung für Wildtiere kann bei zielgerichteter Standortwahl reduziert werden
- Offene Diskussion über Vorteile und Herausforderungen kann die Akzeptanz von Windenergieprojekten beeinflussen

